
p/d operator and the unitarity property of the Fourier transform. 

Assertion 4.1. If u(z)EExpa(Cz n) and A(D) is a p/d operator with symbol analytic in fl, 
then 

F [A (D) u (z)] (0 = A (~) ~ (~). 

Conversely, if an analytic functional h(~) has the form h(~) = A(~)'u(~), where A ($)60(fl), 
and u(~) is the Fourier transform of a function u(z)6Expa(Cf), then 

[F-lh] (z) = A (D) u (z). 

This  a s s e r t i o n  makes i t  p o s i b l e  t o  s o l v e  t h e  problem f o r  p / d  e q u a t i o n s  c o n s i d e r e d  in  
Chap. 2 by t h e  F o u r i e r  method and to  a g a i n  o b t a i n  t h e  r e s u l t s  o f  t h a t  c h a p t e r .  

We p r e s e n t ,  f o r  example ,  t h e  a n a l o g u e s  of  Theorems 7.1 and 7 .2 .  

THEOREM 4 .1 .  Suppose in  t h e  Runge domain ~ t h e  f u n c t i o n  A(~) i s  a n a l y t i c  and A(~) ~ 0. 
Then f o r  any f u n c t i o n  h(z),cExp~(C~ n) t h e r e  e x i s t s  a un ique  s o l u t i o n  a(z)GExp~(C~) , o f  t h e  equa-  
t i o n  

A (D) u (z) = h (z), z~C n, ( 4 .1  ) 

and u(z) is defined by the formula u(z)~ (h(~), A-1(~)e z; ), where h(~) is the Fourier transform 
of the function h(z). 

Proof. We apply the Fourier transform to Eq. (4.1). In view of the isomorphism 

F : Expa (C~") ~ O' (~) 

in the space G'(~) we then obtain the equivalent equation A(~)~(~-----h(~), whence u(~=Aq(~)h(~). 
By the inversion formula u(z) = (Aq(~)h($), expz~ > ------- < h(~), A-1(~)e z~ ) is the solution of Eq. 
(4.1). This is what was required. 

The dual result can be formulated similarly. 

THEOREM 4.2. Let A (~)6~(~), A CO~=0, ~6~. Then for any right side ~ (z)6Exp~_ (C~ n) there 
exists a unique solution of Eq. (4.1) which is defined by the formula 

u ( Z ) = F  [A-1 ( - - ~  (h (z ) ,  ez~ > ](z) ( 4 . 2 )  

(we recall that ~-={~cn:--~}). 

Proof. We use the isomorphism 

F : a (fl-)-~ Exp,_ (C~) 

( t h e  v a r i a b l e s  z and ~ have changed r o l e s  as compared w i t h  t h e  g e n e r a l  t h e o r y ) .  Then in co r -  
r e spondence  w i t h  t h e  i n v e r s i o n  fo rmu la  we go over  from Eq. ( 4 . 1 )  to  t h e  e q u i v a l e n t  e q u a t i o n  
f o r  f u n c t i o n s  in  Gif t-  ) : 

A (--~h(~----h(~),  

where ~(~)= < ~(z)~expz~ >. From this we immediately find that the desired solution has the 
form (4.2). There is what was required. 

It is obvious that the Cauchy problem considered in Sec. 7, Chap. 2 can also be solved 
by the Fourier method. Reformulation of the corresponding results occasions no difficulties. 
The results are the same as in Sec. 7, Chap. 2. 

Thus, in conclusion it can be noted that the operator method (Sec. 7, Chap. 2) and the 
Fourier method are equivalent within the framework of the exponential theory. 

CHAPTER 3 

P/D OPERATORS WITH VARIABLE ANALYTIC SYMBOLS 

i. Definition of a P/D Operator with Variable Symbol 

Let A(z, ~) be an analytic function of the variables zCC n and iE~, where ~cC~ is a Runge 
domain. We have 

A ( z , ; ) =  ~ z ~ A ~ ( 0 ,  ( 1 . 1 )  
]at=0 

where As (~)CG (~). 
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In correspondence with this expansion we set 

def 

A (z, D) u (z)= z~A~ (D) u (z), 
t~l=O 

where A~(D) are p/d operators with symbols A~(~). 

We suppose that the function A(z, ~) is in z an entire function of minimal type. More 
precisely, suppose for any g > 0 and any compact set K c ~ there exists a number M > 0 (de- 
pending, generally speaking, on e and K) such that for alIz~C n and ~/i" 

i A (z, ~)l<Mexp s I z t. ( I  .2) 

Assertion i. If condition (1.2) is satisfied, then the mapping 

A (z, D).Exp~ (C~)-+Exp~ ( ~ )  

i s  d e f i n e d  and c o n t i n u o u s .  

P r o o f .  I n d e e d ,  in  view of  t h e  u n i f o r m  conve rgence  of  t h e  s e r i e s  ( 1 . 1 )  on any compact 
s e t  K c ~ , f o r  any z~Cn:from fo rmu la  ( 5 . 4 )  (Sec .  5, Chap. 1) g i v i n g  t h e  i n t e g r a l  r e p r e s e n t a -  
t i o n  o f  a p /d  o p e r a t o r  we have 

i 
From c o n d i t i o n  ( 1 . 2 )  i t  now f o l l o w s  i m m e d i a t e l y  t h a t  A(D)u(z)6Exp~(C~). 

Further if ~z~(z)-+~(z) (~-+ ~) in'Exp; (C~), then B~v(~)-+B~(~),uniformly for ] ~j]>r~>r 
(j = 1 ...... n) and, in particular, on the contour Fe,~. From this it follows that A(z, D) x 
~ (z)-+ A (z, D) ~ (z) in Expe (C~) and hence :A (z, D) ~ (z) -+ A (z, D) u (z) in xpa (Cz), provided that 
u~(z)-+~(z) in Exps(C~). This is what was required. 

Example, Let 

A (z, ~) ~ ~ ~ (z) A~ (~), 
tll 

I~l=0 

where ~=(z) a r e  p o l y n o m i a l s .  Then to  t h e  symbol A(z,  ~) t h e r e  c o r r e s p o n d s  a p / d  o p e r a t o r  
A(z ,  D) w i t h  p o l y n o m i a l  c o e f f i c i e n t s .  

2. The R e q u i r ~  

In the next section we shall consider the Cauchy problem for systems of p/d equations 
with variable symbols. To study them we introduce the required spaces. 

Let u(z) = (u1(z) ..... UN(Z)) be a vector-valued function where u~(z):C~-+C I are entire 
functions. Further, let m = (m I, .... m N) be an integral vector with m~0 (j = 1 .... ,N); r~0 
is some number 

Definition 2.1. We set 

Expm,, (C~)=[u(z):l[uj(z)[lmy-- sup]ul(z)[(l+]zI)-mJexp(--r[z[)< ~ ,  j = l  . . . . .  N}. 
[ z ~ C  n 

I t  i s  n o t  ha rd  t o  see  t ha t iExpz , , (C~)  i s  a Banach space  w i t h  norm 

li u (z)i l~, ,  - l i  ul (z) ti ~,. ,  + - . -  § il u~ (z)il ~N,," 

F u r t h e r ,  we say  t h a t : ~  (Z)eEXpm,r (~; Cf), where ~o6C n i f  .~ (z) exp ( - -  ~z)EExPm,r (C~). 

The spaces introduced will be the spaces of initial data for the Cauchy problem. 

We now consider the spaces of the variables tCC I, zCC ~ in which a solution of the Cauchy 
problem will be found. 

Let o > 0 and ~ > 0 be some numbers. We denote by 0(6; Expm,r+~It-t~l(~0; C~) the Banach 

space of functions u(t, z) analytic in t for ]t--t01~<6 , whereby u(t, ")~Expm,~+~Lt-t0, (~0; C~)i We 
define the norm in this space by the equality 

N 

]] u (t, z)][~;~.~,~ ~- X max I u1 (t, z) exp (--  ~0z)IImi0,+~lt-t~ 
] = 1  t - - to ~ 6  
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